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Definitions

I For a graph G = (V (G ),E (G )), the first and the second
Zagreb indices are defined as M1(G ) =

∑
v∈V (G)

(d(v))2 and

M2(G ) =
∑

uv∈E(G)

d(u)d(v) respectively, where d(v) denotes

the degree of the vertex v in G .

I The first and the second modified Zagreb index were defined

as mM1(G ) =
∑

v∈V (G)

1

(d(v))2
and

mM2(G ) =
∑

uv∈E(G)

1

d(u)d(v)
respectively, where d(v) is the

degree of the vertex v in G .
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Bridge Graph B1

Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with distinct
vertices ui , vi ∈ V (Gi ) such that ui and vi are not adjacent in Gi .
The bridge graph
B1 = B1(G1,G2, ...,Gk ; u1, v1, u2, v2, u3, v3, ..., uk , vk) of {Gi}ki=1

with respect to the vertices {ui , vi}ki=1 is the graph obtained from
the graphs G1,G2, ...,Gk by connecting the vertices vi and ui+1 by
an edge for all i = 1, 2, ..., k − 1 as shown in the following Figure.

v1 u2 v2 u3 v3 uk vku1

. . .

G1 G2 G3 Gk

Figure: The bridge graph B1 = B1(G1,G2, ...,Gk ; u1, v1, u2, v2, ..., uk , vk)



Bridge Graph B2

Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with vertices
vi ∈ V (Gi ). The bridge graph
B2 = B2(G1,G2, ...,Gk ; v1, v2, v3, ..., vk) of {Gi}ki=1 with respect to
the vertices {vi}ki=1 is the graph obtained from the graphs
G1,G2, ...,Gk by connecting the vertices vi and vi+1 by an edge for
all i = 1, 2, ..., k − 1 as shown in the following Figure.

. . .

G1 G2 G3 GkG4

v1 v2 v3 v4 vk

Figure: B2 = B2(G1,G2, ...,Gk ; v1, v2, v3, ..., vk)



Modified Zagreb Indices of Bridge Graph B1

Theorem

The first modified Zagreb index of the bridge graph B1, k ≥ 2 is
given by

mM1(B1) =
k∑

i=1

(mM1(Gi ))−
{ ∑

i=1,k

2d(ui ) + 1

d(ui )2(d(ui ) + 1)2

+ 4
k−1∑
i=2

{
d(ui ) + 1

d(ui )2(d(ui ) + 2)2
+

d(vi ) + 1

d(vi )2(d(vi ) + 2)2

}}



Proof.

Using the definition of first modified Zagreb index, we have

mM1(B1) =
k∑

i=1

(mM1(Gi ))−
k−1∑
i=1

1

d(vi )2
−

k∑
i=2

1

d(ui )2
+

k−1∑
i=2

1

(d(vi ) + 2)2

+
k−1∑
i=2

1

(d(ui ) + 2)2
+

1

(d(v1) + 1)2
+

1

(d(uk) + 1)2

=
k∑

i=1

(mM1(Gi ))−
{

2d(v1) + 1

d(v1)2(d(v1) + 1)2
+

2d(uk) + 1

d(uk)2(d(uk) + 1)2

+ 4
k−1∑
i=2

{
d(ui ) + 1

d(ui )2(d(ui ) + 2)2
+

d(vi ) + 1

d(vi )2(d(vi ) + 2)2

}}



Corollary

If Gi = G for all i = 1, 2, ..., k and u, v ∈ V (G ), then

mM1(B1) = kmM1(G )−
{

2d(u) + 1

d(u)2(d(u) + 1)2
+

2d(v) + 1

d(v)2(d(v) + 1)2

+ 4(k − 2)

{
d(u) + 1

d(u)2(d(u) + 2)2
+

d(v) + 1

d(v)2(d(v) + 2)2

}}



Theorem

The second modified Zagreb index of the bridge graph B1, k ≥ 2 is
given by

mM2(B1) =
k∑

i=1

(mM2(Gi ))−
{ k−1∑

i=1

∑
w∈N(vi )

1

d(vi )[d(vi ) + 1]d(w)

+
k∑

i=2

∑
w∈N(ui )

1

d(ui )[d(ui ) + 1]d(w)

−
k−1∑
i=1

1

[d(vi ) + 1][d(ui+1) + 1]

}



Proof.
By the definition of second modified Zagreb index, mM2(B2) is

equal to the sum of
1

dB2(x)dB2(y)
, where the summation is taken

over all edges xy ∈ E (B2). From the definition of the bridge graph
B1, E (B1) = E (G1)∪E (G2)∪ ...∪E (Gk)∪{viui+1; 1 ≤ i ≤ k−1}.
In order to compute mM2(B1), we partition our sum into four sums
as follows.
The first sum S1 is taken over all edges xy ∈ E (G1).

S1 =m M2(G1)−
∑

w∈N(v1)

1

d(v1)(d(v1) + 1)d(w)

The second sum S2 is taken over all edges xy ∈ E (Gk).

S2 =m M2(G1)−
∑

w∈N(uk )

1

d(uk)(d(uk) + 1)d(w)



The third sum S3 is taken over all edges xy ∈ E (Gi ) for all
i = 2, 3, ..., k − 1.

S3 =
k−1∑
i=2

(mM2(Gi ))−
k−1∑
i=2

{ ∑
w∈N(ui )

1

d(ui )(d(ui ) + 1)d(w)

+
∑

w∈N(vi )

1

d(vi )(d(vi ) + 1)d(w)

}

The last sum S4 is taken over all edges viui+1 for all
i = 1, 2, ..., k − 1.

S4 =
k−1∑
i=1

1

(d(vi ) + 1)(d(ui+1 + 1)

Now mM2(B1) is obtained by adding S1, S2,S3,S4.



Corollary

If Gi = G for all i = 1, 2, ..., k and u, v ∈ V (G ), then

mM2(B1) = k(mM2(G ))− (k − 1)

{ ∑
w∈N(u)

1

[d(u)][d(u) + 1]d(w)

+
∑

w∈N(v)

1

[d(v)][d(v) + 1]d(w)
− 1

[d(u) + 1][d(v) + 1]

}



Modified Zagreb Indices of Bridge Graph B2

Theorem

The first modified Zagreb index of the bridge graph B2, k ≥ 2 is
given by

mM1(B2) =
k∑

i=1

H(Gi )−
{ k∑

i=1

1

[d(vi )2]
+

k−1∑
i=2

1

[d(vi ) + 2]2
+
∑
i=1,k

1

[d(vi ) + 1]2

}

Using the definition of first modified Zagreb index, we get the
result.

Corollary

If Gi = G for all i = 1, 2, ..., k and u, v ∈ V (G ), then

mM1(B2) = kmM1(G )−
{

k

[d(v)2]
+

k − 2

[d(v) + 2]2
+

2

[d(v) + 1]2

}



Theorem

The second modified Zagreb index of the bridge graph B2, k ≥ 2 is
given by

mM2(B2) =
k∑

i=1

(mM2(Gi ))−
{ ∑

i=1,k

∑
w∈N(vi )

1

d(vi )(d(vi ) + 1)d(w)

+
k−1∑
i=2

∑
w∈N(vi )

1

d(vi )(d(vi ) + 2)d(w)
− 1

(d(vi ) + 1)(d(vi ) + 2)

−
k−1∑
i=2

1

(d(vi ) + 2)(d(vi+1) + 2)
− 1

(d(vk−1) + 2)(d(vk) + 1)

}



Proof.
By the definition of second modified Zagreb index, mM2(B2) is

equal to the sum of
2

dB2(x)dB2(y)
, where the summation is taken

over all edges xy ∈ E (B2). From the definition of the bridge graph
B2, E (B2) = E (G1)∪E (G2)∪ ...∪E (Gk)∪{viui+1; 1 ≤ i ≤ k−1}.
In order to compute mM2(B2), we partition our sum into four sums
as follows.
The first sum S1 is taken over all edges xy ∈ E (G1).

S1 =m M2(G1)−
∑

w∈N(v1)

1

d(v1)(d(v1) + 1)d(w)
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S2 =m M2(G1)−
∑

w∈N(uk )

1

d(uk)(d(uk) + 1)d(w)



The third sum S3 is taken over all edges xy ∈ E (Gi ) for all
i = 2, 3, ..., k − 1.

S3 =
k−1∑
i=2

(mM2(Gi ))−
k−1∑
i=2

{ ∑
w∈N(vi )

2

d(vi )(d(vi ) + 2)d(w)

}

The last sum S4 is taken over all edges viui+1 for all
i = 1, 2, ..., k − 1.

S4 =
1

(d(v1) + 1)(d(v2) + 2)
+

1

(d(vk−1) + 2)(d(vk) + 1)

+
k−2∑
i=1

1

(d(vi ) + 2)(d(vi+1) + 2)

Now mM2(B2) is obtained by adding S1, S2,S3,S4.



Corollary

If Gi = G for all i = 1, 2, ..., k and u, v ∈ V (G ), then

mM2(B2) = k(mM2(G ))−
{

2
∑

w∈N(v)

1

d(v)(d(v) + 1)d(w)
+ (k − 2)

∑
w∈N(v)

1

d(v)(d(v) + 2)d(w)

− 1

(d(v) + 2)

[
k − 2

(d(v) + 2)
+

2

d(v) + 1

]}



Polyphenyl Chains Oh, Mh and Lh

Two vertices u and v of a hexagon H are said to be in
ortho-position if they are adjacent in H. If two vertices u and v are
at distance two, they are said to be in meta-position and if two
vertices u and v are at distance three, they are said to be in
para-position. Examples of vertices in the above three types of
positions are shown in figure 3.

u

v

u u

v

v

Figure: Ortho-, meta- and para-positions of vertices in hexagon



An internal hexagon H in a polyphenyl chain is said to be an
ortho-hexagon, mete-hexagon and para-hexagon, respectively if
two vertices of H incident with two edges which connect other two
hexagons are in ortho-, meta- and para-position. A polyphenyl
chain of h hexagons is ortho − PPCh, denoted by Oh, if all its
internal hexagons are ortho-hexagons. Similarly we define
meta− PPCh (denoted by Mh) and para− PPCh (denoted by Lh),
(see figure 4).

. . .

. . .

. . .

Oh

Lh

Mh

hh-11 2 3

1

1

2

2

3

3

h-1

h-1

h

h

Figure: Ortho-, para- and meta-polyphenyl chanins with h hexagons



The polyphenyl chains Mh and Lh can be viewed as the bridge
graphs B1(C6,C6, ...,C6; u, v , u, v , ..., u, v) (h times) where C6 is
the cycle on six vertices and u and v are the vertices shown in
figure 3. Since mM1(C6) =m M2(C6) = 3/2, using corollaries 1 and
2 we obtain

mM1(Mh) =m M1(Lh) =
69h + 22

48

mM2(Mh) =m M2(Lh) =
23h + 4

18

The polyphenyl chains Oh can be viewed as the bridge graph
B2(C6,C6, ...,C6; v , v , ..., v)(h times). Using corollaries 3 and 4,

mM1(Oh) =
189h + 14

144

mM2(Oh) =
75h − 2

48
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Gutman I, Trinajstić N, Graph theory and molecular orbitals.
Total π-electron energy of alternant hydrocarbons, Chem.
Phys. Lett. 17 (1972) 535-538.

Gutman I, Das K C, The first Zagreb index 30 years after,
MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.

Hao J, Theorems about Zagreb indices and modified Zagreb
indices, MATCH Commun. Math. Comput. Chem. 65 (2011)
659-670.

Hao J, The modified Zagreb Indices of Nanotubes and
Dendrimer Nanostars, Journal of Computational and
Theoretical Nanoscience, Vol 9, (2012) 727-730.

Li X, Yang X, Wang G, Hu R, The vertex PI and Szeged
indices of chain graphs, MATCH Commun. Math. Comput.
Chem.68(2012) 349-356.



Li X, Yang X, Wang G, Hu R, The vertex PI and Szeged
indices of chain graphs, MATCH Commun. Math. Comput.
Chem.68(2012) 349-356.

Mansour T, Schork M, Wiener, hyper-Wiener, detour and
hyper-detour indices of bridge and chain graphs, J. Math.
Chem. 581(2009) 59-69.

Milicevic A, Nikolic S, On variable Zagreb indices, Croat.
Chem. Acta 77 (2004) 97101.
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